
Implementation of Multispectral Image Classi�cation

on a Remote Adaptive Computer

Marco A. Figueiredo a, Clay S. Gloster b, Mark Stephens c,

Corey A. Gravesb, Mouna Nakkarb

a SGT Inc., Code 564, NASA Goddard Space Flight Center,

Greenbelt Road, Greenbelt, Maryland, 20771
bElectrical and Computer Engineering, North Carolina State University

Box 7914, NCSU, Raleigh NC 27695-7914
c Code 585, NASA Goddard Space Flight Center,

Greenbelt Road, Greenbelt, Maryland, 20771

(Please send all correspondence to Clay Gloster)

Electrical and Computer Engineering, North Carolina State University

Box 7914, NCSU, Raleigh NC 27695-7914

E-mail: gloster@eos.ncsu.edu

phone: (919) 515-7348

fax: (919) 515-2285

E-mail addresses of the other authors

Marco Figueiredo: marco@fpga.gsfc.nasa.gov

Mouna Nakkar : mouna@ibmoto.com

Mark Stephens: Mark.A.Stephen.1@gsfc.nasa.gov

Corey Graves: cagrave@eos.ncsu.edu

Abstract

As the demand for higher performance computers for the processing of remote sensing science algorithms
increases, the need to investigate new computing paradigms is justi�ed. Field Programmable Gate Arrays
enable the implementation of algorithms at the hardware gate level, leading to orders of magnitude performance
increase over microprocessor based systems. The automatic classi�cation of spaceborne multispectral images
is an example of a computation intensive application that can bene�t from implementation on an FPGA-
based custom computing machine (adaptive or recon�gurable computer). A probabilistic neural network is
used here to classify pixels of a multispectral LANDSAT-2 image. The implementation described utilizes Java
client/server application programs to access the adaptive computer from a remote site. Results verify that a
remote hardware version of the algorithm (implemented on an adaptive computer) is signi�cantly faster than
a local software version of the same algorithm (implemented on a typical general-purpose computer).

I. INTRODUCTION

A new generation of satellites is being developed by the National Aeronautics and Space Admin-

istration (NASA) to compose the Earth Observing System (EOS). The instruments aboard the EOS

satellites not only extend the observation life of the current satellites, but they also extend the ca-

pabilities of remote sensing scientists to better understand the Earth's environment. Along with the

scienti�c advancements of the new missions, it is also necessary to explore new technologies that fa-

cilitate and reduce the cost of the data analysis process. In order to process the high volume of data

generated by the new EOS satellites, NASA is constructing the Distributed Active Archive Centers

(DAACs), an extensive and powerful parallel computing environment. Scientists will be able to request

certain data products from these centers for further analysis on their own computing systems. A new

technology that could bring increased processing power to the scientist's desk, o�ering more complex

analysis and interpretation of remote sensed scienti�c data, is highly desirable. The ultimate scenario

would be for the scientist to request the data directly from the satellite along with historic data from

an archive center.

Field Programmable Gate Array (FPGA)-based computing, also known as "adaptive" or "recon�g-

urable computing", has emerged as a viable computing option in computationally intensive applica-

tions. These computing systems combine the exibility of general purpose processors with the speed of

application speci�c processors. By mapping hardware to FPGAs, the computer designer can optimize

the hardware for a speci�c application resulting in acceleration rates of several orders of magnitude

over general purpose computers. Because the FPGAs are personalized using SRAM-based memory

cells or a fuse programming technology, they can be recon�gured by the designer for other applications.

Several recon�gurable computers have been implemented to demonstrate the viability of recon�g-

urable processors [1], [2], [3], [4]. Applications mapped to these processors include: pattern recognition

in high-energy physics [5], applications in statistical physics[6], and genetic optimization algorithms

[7], [8]. In many cases [9], [10], [11], the recon�gurable computing implementation provided the highest

2

performance, in terms of execution speed. The advent of recon�gurable processors along with novel

methods for mapping applications onto adaptive or recon�gurable processors enables a new comput-

ing paradigm that may represent the future for remote sensing scienti�c data processing. In fact,

many applications utilizing FPGA based computers have been developed showing orders of magnitude

acceleration over microprocessor based systems [12],[13],[14]. Moreover, microprocessors and FPGAs

share the same underlying technology - the silicon fabrication process. Therefore, it is reasonable to

conclude that FPGA based machines can usually outperform microprocessor based systems by orders

of magnitude [15], [16],[17].

To achieve such performance, the application must e�ectively utilize the available resources. This

presents a challenge for software designers, who are generally accustomed to mapping applications

onto �xed computing systems. Generally, the designers examine the available hardware resources, then

modify their application accordingly. With recon�gurable computers, the available resources can be

generated as needed. While it may seem that this exibility would ease the mapping process, it actually

introduces new problems, such as what components should be used, and how many of each component

should be used to generate the best performance. With conventional hardware components, these

questions are less of an issue. In addition, software engineers are generally not adept at hardware design.

Thus, several research groups have developed methods for mapping applications to recon�gurable

processors [2], [18], [19], [20], [21].

The Adaptive Scienti�c Data Processing (ASDP) group at NASA's Goddard Space Flight Center

(GSFC), in conjunction with researchers at North Carolina State University, have been investigating

the utilization of FPGA-based computing in the processing of remote sensing scienti�c algorithms.

The �rst prototype developed by the group utilized a commercial-o�-the-shelf (COTS) recon�gurable

accelerator in the implementation of an automatic classi�er for the LANDSAT-2 multispectral images

[22]. The implementation discussed in this paper is an extension of the original prototype that allows

users to classify the images on the accelerator from a remote site. Results indicate that a remote im-

plementation of the classi�er in adaptive computing hardware is faster than a software implementation

that executes on a local high-end workstation.

This paper presents details of the FPGA design and is organized as follows. Section 2 describes

the classi�er algorithm that utilizes a probabilistic neural network (PNN). The implementation of the

FPGA custom computing machine is then presented. Finally, a performance analysis of local and

remote versions of the algorithm is presented.

3

II. The PNN multispectral image classifier

Remote sensing satellites utilize multispectral scanners to collect information about the Earth's

environment [23]. The data collected by such instruments are a set of images, each corresponding to

one spectral band. A multispectral image pixel is represented by a vector of size equal to the number

of bands. The combination of the multiple spectrum measurements represented by each element

of the pixel vector determine a signature that corresponds to a physical object being viewed by the

satellite. Through the observation of a multispectral image and the comparison of pixel vectors to those

obtained from known locations (in-situ measurements), a scientist is able to identify unique signatures

of physical objects and compose classes. These classes contain multispectral pixel representations of

physical objects on the earth that are closely related. Example classes include forest, tundra, wetland,

water, etc.

Several neural network schemes have been devised for the automatic classi�cation of multispectral

images [24]. One in particular, the Probabilistic Neural Network (PNN) classi�er [25], exhibits ac-

ceptable accuracy, very small training time, robustness to weight changes, and negligible retraining

time. A description of the derivation of the PNN classi�er and details of the network implementa-

tion including rate of false alarms, neural network size, etc. are presented in Chettri et. al. [25]. The

Blackhills (South Dakota, USA) data set was generated by the Landsat 2 multispectral scanner (MSS).

The image's four spectral bands (0.5-0.6 �m, 0.6-0.7 �m, 0.7-0.8 �m, and 0.8-1.1 �m) correspond to

channels 4 through 7 of the Landsat MSS sensor. There are 262,144 pixels corresponding to a 512x5l2

pixel image size, and each pixel represents a 76m x 76m ground area; the images were obtained in

1973. The ground truth was provided by the United States Geological Survey.

Figure 1 illustrates the PNN classi�er procedure. Each multispectral pixel, represented by a vector,

is compared to a set of pixels belonging to a class. A probability value is calculated for each class.

The highest value indicates the class into which the pixel �ts. Eq. 1 is used to derive a value that

indicates the probability that the pixel �ts into class Sk.

f(X j Sk) = K1[k]
PkX

i=1

e[�K2[k](~X� ~Wki)
� (~X� ~Wki)] (1)

where (~X is a pixel vector, ~W ki is the weight i of class k, d is the number of bands, k is the number

of classes, Pk is the number of weights per class, and K1[k], K2[k] are constants.)

4

III. The FPGA implementation

The �rst step in implementing an application on an adaptive computer is to select the FPGA-based

custom coprocessor architecture that best matches the algorithm in question. At the current state of

the technology, certain FPGA architectures provide better performance than others for a particular

class of applications. A preliminary analysis of the PNN classi�er indicated that the FPGA architecture

[26], shown in Figure 2, matched well with the algorithm. The selected FPGA architecture is composed

of a PCI bus based motherboard and up to 16 plug-in modules. These plug-in modules each contain

two Xilinx 4013E FPGA devices(XFPGA and YFPGA) and provide an equivalent of 13,000 gates

per FPGA, or 26,000 gates per module. The design implementation required approximately 1160

CLBs (85% utilization) per FPGA. Since the module contained two FPGAs and two separate memory

modules (connected via the HBUS), we can perform two lookup table (LUT) operations simultaneously.

A. Algorithm partitioning

The computation intensive portion of the multispectral image classi�cation algorithm found in Eq. 1

was identi�ed by pro�ling an implementation of the algorithm that was written using the C program-

ming language. This computation was selected to be executed on the FPGA coprocessor to improve

performance for the complete classi�cation algorithm. The graphical user interface, data storage,

adaptive coprocessor initialization code, algorithm synchronization, and data I/O is performed by the

host processor. The compute intensive PNN classi�cation algorithm equations were mapped onto a

single module.

Figure 3 illustrates the algorithm partitioning. The host processor displays the image during classi-

�cation. The host then sends a pixel vector to the FPGA coprocessor. Classi�cation is performed on

the coprocessor and results are returned to the host to be displayed. The host also computes the total

time required to process a complete image. If we wish to use multiple modules as coprocessors, the

host schedules a pixel vector to be processed on each module in a round-robin fashion, then gathers

the results as they become available.

B. FPGA application design

Due to the limited number of gates available on a single FPGA, it was not feasible to use oating

point arithmetic in our implementation of the PNN algorithm. We therefore transformed the algorithm

to use �xed point arithmetic prior to hardware implementation. The width of the �xed point datapath

was determined by simulating variable bit operations in C and comparing the results obtained from

5

the original algorithm in oating point. Once the �xed point classi�cation of the Blackhills data

set yielded exactly the same results as the oating point version, the data path width for the FPGA

implementation was known. (Since the output of the PNN classi�er is simply a 4-bit value representing

the class that matches the pixel, the �xed point version produced exactly the same result as the oating

point version. Hence there is no loss in precision due to implementation using �xed point arithmetic.)

Figure 4 shows the data ow diagram for the hardware implementation of the PNN classi�er. A

portion of the design was mapped onto the XFPGA and the remaining blocks were implemented on the

YFPGA of the module. The number of bands (d) was �xed to 4, the maximum value of the number

of weights per class (Pk) was �xed to 512, and the maximum number of classes (k) was set to 16. As

shown in Eq 1, there are two constants, K1 and K2, that are class dependent. These constants are

pre-calculated on the host and downloaded to memory banks residing on the modules.

The weight memory was mapped to the SRAM that is connected to the YFPGA on the module. The

weight memory can be as large as 16*512*4*2 bytes = 32768 16-bit words. Each weight value occupies

10-bits. Since each class can have up to 512 weights, an array that holds the number of weights for

each class is employed. The inputs of the array are also visible from the host processor.

A 4-bit register holds the number of classes. This register is initialized by the host before loading the

FPGA coprocessors. Due to the lack of space on the XFPGA, the K1 multiplier and the class compar-

ison blocks were moved to the host. These calculations amount to k multiplications and comparisons

per pixel classi�cation. Since the number of classes, k, is small, they do not account for a signi�cant

amount of the computation, leading to a small performance penalty. For example, if the number of

classes k = 16, the maximum number of weights per class Pk = 512, and we are classifying a 512x512

image with d = 4 spectral bands, Eq. 1 is calculated 16 times. The performance penalty amounts to

only 16 multiplications and 16 comparisons per 512x512 image that are executed on the host rather

than executed on the FPGA. This is a small overhead relative to the more than 5123 multiplications

that are computed on the FPGA for this example.

Figure 4 contains a Subtraction Unit that computesW, a 4 x 10-bit element vector for W (w0; w1; w2; w3)

minus X (x0; x1; x2; x3). The result of the subtraction ranges from -1023 to 1023, requiring 11 bits in

two's complement format. The Square Unit multiplies each 11-bit element of the Y vector by itself

(i.e. t0 = y0 � y0). The values of the elements of the T vector range from 0 to 1,046,529, requiring 20

bits in two's complement format.

The next computation involves the Band Accumulator Unit. This unit adds the 4 elements of the

T vector together resulting in u, ranging in value from 0 to 4,186,116, requiring 22 bits. The K2[k]

6

Memory holds the K2 values for each class. K2 = (1=2)��k 2, where �k = 2; 3; : : : ; 11; 12. As a result,

K2 varies between 0.125 (�k = 2), and 0.003472 (�k = 12). The largest value of K2 = 0.125 in decimal

and is represented exactly in binary (0.001). In order to increase the precision of the multiplication,

the values of K2 are stored with the decimal point shifted to the right by 2 (multiplied by four). After

K2 is multiplied by u in the K2 Multiplier Unit, the decimal point of the result of the multiplication is

shifted to the left by 2 (divide by 4 e�ect). Since this is a representation issue, no hardware is necessary

to perform the shifts in the YFPGA (refer to Figure 4), only the host needs to maintain the values in

the K2[k] memory in the appropriate format. The K2 Multiplier Unit multiplies the K2 values for

each class by the accumulated values of the di�erence between a pixel and a weight vector. It delivers

a 44-bit result to the TO XFPGA unit shown in Figure 4. Bits 0 to 23 represent the fraction portion

(remember that the decimal point is shifted to the left by 2), and bits 24 to 43 represent the integer

part of the result.

The next operation is to compute the exponential of the negative of this number. Given the precision

of the following operations, any number above 24 will yield zero as a result. Thus, if any of bits 43 to

29 is set or both bits 28 and 27 are set, the result of e�a should be zero. Only 28 bits are passed on

to the Exponential LUT Unit, and they are bits 1 to 28. Bit 0 and bits 29 to 43 are discarded. It was

also found that a considerable number of results of the multiplication are zero, which indicates that

the result of the exponential should be one. In order to save processing steps in this case, the output

of the multiplier is tested for zero, and a ag is passed to the Exponential LUT Unit, indicating that

its result should be 1.

A look-up table is used to determine the value of e�a. If we assume that a = b+ c, then:

e�a = e�(b+c) = e�be�c (2)

Since a is a 28-bit binary number, the value comprising bits 27 to 14 of a represent b, and the value

comprising bits 13 to 0 of a represent c. The range of values of b and e�b are:

00000:000000000 � b � 10111:111111111; (3)

or

0 � b � 23:9980469; (4)

which results in

0:9980519 � e�b � 3:78� 10�11 (5)

7

The range of values of c and e�c are:

00000:00000000000000000000001 � c � 00000:00000000011111111111111; (6)

or

1:19 � 10�7 � c � 1:8919 � 10�3; (7)

which results in

0:999999881 � e�c � 0:998109888 (8)

The values of e�b and e�c are previously calculated and organized into a look-up table. At run

time, the values of b and c are used to address the look-up table stored in the memory that is directly

connected to the XFPGA. The values of e�b and e�c retrieved from the look-up table are then multiplied

to give the value of e�b. The values stored in the look-up table are 32-bits wide. The result of the

multiplication is 64-bits, but only the most signi�cant 32 bits are sent out. As a result,

3:77 � 10�11 � e�a � 0:998051781: (9)

The Class Accumulator Unit sums up all the comparisons between a given pixel and all weights of

a given class, and outputs the result when it receives a ag indicating that the data to add to the

accumulator refers to the last weight in a class. The output of the Exponential Multiplier Unit range

is 3:77:10�11 � d � 0:998051781. Thus, the largest accumulated value is 0.998051781 * 512 (max. of

weights) = 511.002511872. In order to keep the precision of d, the accumulator is extended to 40 bits

to accommodate the original 31 bits after the decimal point and 1 bit before the decimal point, and

the new 8 bits before the decimal point. Each class has a K1 value associated with it. The value of

K1 is determined by the following formula:

K1 =
1

(2�)d=2�dkPk
(10)

The result of the multiplication of K1 by the accumulated di�erences between a pixel and all weights

in a given class is compared with all other classes to determine the largest result, which indicates in

which class a pixel most probably belongs. In order to keep the values being multiplied in the same

range allowing us to use �xed point arithmetic, the values of Kl are normalized as follows: Given d,

�k and Pk, the host program calculates all K1 values, and divides them by the largest one. The result

is that one value of K1 equals 1 and all the others are less than 1. The K1 Multiplier Unit multiplies

8

the 40-bit result of the Class Accumulator Unit by the 32-bit K1 value from the K1 Memory Unit,

and outputs a 40-bit result to the g register in the Class Comparison Unit. The Class Comparison

Unit receives a value that represents the comparison between a pixel and all weights in a class, and

compares this value against the values generated for all other classes. At the end of the calculation

of all classes, it outputs a code that represents the class which presented the largest value or is the

closest match.

C. The host software

The software that was developed for the PNN algorithm that executes on the host processor was

written in the Java programming language. We selected the Java programming language for several

reasons. Java supports software reuse, native methods, remote method invocation, and it has a built-in

security manager. Software reuse allows Java objects and methods to be used repeatedly in di�erent

applications. Native methods allow legacy code (old software written in another language) to be called

directly from Java methods. The security manager and remote method invocation allow Java programs

to be executed on remote CPUs with the system taking care of network tra�c errors, security, etc.

The FPGA system used for development of the hardware modules, contains drivers for interfacing to

the FPGA devices that are only available in the C programming language. Java, was a useful choice

for a programming language since native methods allow one to call C routines directly from Java. This

is accomplished by building a dynamic link library that contains the C functions that interface to the

FPGA coprocessors. A Java native method is used to call these C functions directly.

The application was implemented using a client/server methodology to provide an interface to the

FPGA coprocessors from a remote site. The server program interfaces directly to the recon�gurable

accelerator via the C drivers. It receives a block of pixels from the client, initiates the classi�cation

of each of the pixels on the FPGA accelerator, gathers the results into a block of classi�ed data,

and sends the results back to the client. The client software controls the user interface, image data

input/output and translation, in addition to communication with the server. By selecting Java as

a programming language and separating the program into client and server subsystems, the client

software is completely independent of the operating system that will execute the client program. Only

the server contains code that is not only dependent on the operating system used, but also depends on

the speci�c recon�gurable accelerator that has been selected. Hence, in this paper we present results

obtained from an implementation of the PNN algorithm that can be executed from a remote machine

accessible, for example, on the Internet.

9

IV. Experimental Results

In our experiments, we used the remote implementation of the PNN classi�er to measure the e�ec-

tiveness of a client/server approach to adaptive computing. Figure 5 illustrates a potential scenario

for remote image classi�cation. In this con�guration, the server program has a direct interface to the

FPGA coprocessor. It initializes the FPGA board and loads the architecture shown in Figure 4 into

the programmable hardware. In our project, the server executes on a workstation at NASA. The client

program communicates with the server via the Internet. The client requests a connection with the

server and, once granted, sends data to the server for processing. The server processes the data and

sends the results back to the client for display. While the client is designed to execute at a remote site,

e.g. NCSU, in our experiments, both the client and server programs were executed on a single host at

NASA.

Two software implementations of the PNN algorithm were developed to compare the relative perfor-

mance of implementations in two di�erent programming languages. One version was written entirely

in the Java programming language. The other version was written using the C programming language.

The main routine in the client spawned either the Java or C versions of the algorithm via a call from

a normal or native method respectively.

Two FPGA-based hardware versions of the PNN algorithm were implemented using single or mul-

tiple modules. We report results using two modules as we only had two modules available for our

experiments. In the single module case, one pixel or one block of pixels were sent to each FPGA

coprocessor and the results were returned to the client via the server. In the two module experiments,

one pixel or one block was sent to each of the two FPGA coprocessors in an attempt to speedup

algorithm execution by a factor of 2. Each module in the multiple module case contained a complete

implementation of the hardware in Figure 4.

A traditional version of the PNN Classi�er algorithm was previously developed as the basis for

the remote version presented in this paper. This experiment demonstrates the potential merits of a

remote image classi�cation algorithm implementation. The traditional version executed on a 100 MHz

Pentium PC. This implementation, written entirely in C, required 2043 CPU seconds to classify the

complete Blackhills data set. By augmenting the PC with a single module running the PNN classi�er

at 16 MHz, the processing time was reduced to 220 CPU seconds. In this case, the adaptive computing

implementation is 9.29 times faster than the software version. Adding one additional module improved

execution time to 90 CPU seconds.

In our experiments with the remote PNN classi�er, we ran a total of 4 di�erent scenarios presented

10

in Figure 6. The scenarios allow us to compare local and remote versions of the algorithm that execute

on the client and server with pixel-based or block-based algorithms where one pixel or one block of

pixels is processed. In each experiment, we present execution times for two software implementations

(written in Java and C) and two hardware implementations (one module or two modules).

In Table I, we present results of a remote implementation of the image classi�cation algorithm where

one pixel is processed at a time. Note that the implementation of the algorithm in Java requires

7598 CPU seconds to complete. The C version of the algorithm requires slightly more time since it is

actually spawned from the local client Java program to execute on the remote server workstation. (The

overhead associated with calling a C function from Java is included in the execution time.) For all

practical purposes, the C and Java versions of the algorithm require approximately the same execution

time. This was a strange result since Java is an interpreted language, however, we noticed a drastic

improvement in the execution of Java programs using more recent versions of the Java interpreter.

The remote version of the algorithm executing on a single FPGA module was 3.57 times faster than

the remote software version. Also note that the addition of one module in the multiple module case

does not impact performance.

The next experiment involved sending a block of data from the client to the server for processing. The

results of this experiment are also shown in Table I. In our experiments, an arbitrary block size (equal

to 6 rows) was selected. (Future experiments will identify the optimal block size.) Since there are 512

pixel vectors in a row, and 4 pixels per vector, one block contains 12,228 pixels. Note that the execution

time of the remote Java version of the block-based algorithm is signi�cantly smaller than the pixel-

based algorithm. The execution time reduced from 7598 to 1358 CPU seconds. Once again, the single

module implementation was signi�cantly (7.6 times) faster than the remote software version written in

Java. The addition of a second module did not provide a speedup due to the overhead associated with

sending a block of data to the server. Please note that the FPGA coprocessor consistently processes

a pixel at a time, however, the server will wait for all pixels in a block to be processed before sending

the results back to the client.

Table II presents results of PNN classi�cation executing on a local workstation. The client program

can initiate execution of either of the software or hardware algorithm implementations. In the local

pixel-based algorithm, the Java version requires about 1317 CPU seconds and the single module

implementation requires 141 CPU seconds. This is approximately an order of magnitude improvement

in execution time. The multiple module version completes in 77 seconds resulting in a 2:1 speedup

over the single module as expected. The results from Table II illustrate that block-based processing is

11

counterproductive on a local client workstation.

V. Conclusions

In this paper, it was shown that the implementation of a multispectral image classi�er on an adaptive

computer yields an order of magnitude performance increase over high end workstations. If we extract

the fastest execution times for the algorithm from the Tables presented, we �nd an interesting result

that relates to the potential impact of remote adaptive computing technology. The fastest remote

hardware implementation of the PNN algorithm consisted of a single module requiring 178 CPU

seconds to complete. On the other hand, the fastest local software version of the algorithm was the

Java version that required 1309 CPU seconds. This is 7.35 times slower than the remote hardware

implementation. Hence, for image classi�cation, a remote hardware implementation of the algorithm

is faster than a local software implementation of the algorithm. Future work is to identify additional

applications wherein a remote hardware implementation is consistently faster than a local software

version. Additionally experiments that quantify the e�ects of a heavily loaded network connection

should be conducted.

References

[1] J. Hess, D. Lee, S. Harper, M. Jones, and P. Athanas, \Implementation and Evaluation of a Prototype Recon�gurable
Router," in Seventh IEEE Workshop on FPGAs for Custom Computing Machines, 1999.

[2] M. J. Wirthlin and B. L. Hutchings, \DISC: A Dynamic Instruction Set Computer," in Third IEEE Workshop on FPGAs
for Custom Computing Machines, 1995.

[3] L. Agarwal, M Wazlowski, and S. Ghosh, \An Asynchronous Approach to E�cient Execution of Programs on Adaptive
Architectures Utilizing FPGAs," in Second IEEE Workshop on FPGAs for Custom Computing Machines, 1994, pp. 101{110.

[4] P. Bertin and Herve' Touati, \PAM Programming Environments: Practice and Experience," in Second IEEE Workshop on
FPGAs for Custom Computing Machines, 1994, pp. 133{138.

[5] H. Hogl, A. Kugel, J. Ludvig, R. Manner, K. H. No�z, and R. Zoz, \Enable++: A Second Generation FPGA Processor," in
Third IEEE Workshop on FPGAs for Custom Computing Machines, 1995.

[6] C. P. Cowen and S. Monaghan, \A Recon�gurable Monte-Carlo Clustering Processor (MCCP)," in Second IEEE Workshop
on FPGAs for Custom Computing Machines, 1994, pp. 59{65.

[7] S. D. Scott, A. Samal, and S. Seth, \HGA: A Hardware-Based Genetic Algorithm," in ACM/SIGDA Symposium on Field
Programmable Gate Arrays, 1995, pp. 53{59.

[8] P. Graham and B. Nelson, \Genetic Algorithms in Software and in Hardware," in Fourth IEEE Workshop on FPGAs for
Custom Computing Machines, 1996.

[9] W. Luk, T. Lee, J. Rice, and P. Cheng, \Recon�gurable Computing Augmented Reality," in Seventh IEEE Workshop on
FPGAs for Custom Computing Machines, 1999.

[10] M. Gokhale, B. Holmes, A. Kopser, D. Kunze, D. Lopresti, S. Lucas, R. Minnich, and P. Olsen, \Splash: A Recon�gurable
Linear Logic Array," in International Conference on Parallel Processing, 1990, pp. 526{532.

[11] J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touti, and P. Boucard, \Programmable Active Memories: Recon�gurable
Systems Come of Age," IEEE Transactions on VLSI Systems, vol. 4, no. 1, pp. 56{69, 1996.

[12] P. Athanas and L. Abbott, \Real-time image processing on a custom computing platform," IEEE Computer, vol. 28, pp.
16{24, February 1995.

[13] N. Shirazi P. Athanas and A. Abbott, \Implementation of a 2-D fast fourier transform on an FPGA-based custom computing
machine," Proceedings of the 5th International Workshop on Field-Programmable Logic and Applications, vol. 1, pp. 282{292,
1995.

[14] B. Hutchings M. Rencher, \Automated Target Recognition on Splash-II," IEEE Symposium on Field Programmable Custom
Computing Machines, vol. 1, pp. 232{240, April 1997.

[15] K. Bazargan and M. Sarrafzadeh, \Recon�gurable Computing Augmented Reality," in Seventh IEEE Workshop on FPGAs
for Custom Computing Machines, 1999.

[16] Get ready for recon�gurable computing, ," Computer Design, vol. 1, pp. 55{63, April 1998.
[17] T. Ho�mann U. Nageldinger R. Hartenstein M. Her and U Kaiserslautern, \On recon�gurable co-processing units," Proceed-

ings of the 5th Recon�gurable Architectures Workshop (RAW'98), vol. 1, March 30 1998.

12

[18] M Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman, and S. Ghosh, \PRISM-II Compiler and
Architecture," in First IEEE Workshop on FPGAs for Custom Computing Machines, 1993, pp. 9{16.

[19] P. M. Athanas and H. F. Silverman, \Processor Recon�guration Through Instruction-Set Metamorphosis," IEEE Computer,
vol. 26, no. 3, pp. 11{18, 1993.

[20] D. Galloway, \The Transmogri�er C Hardware Description Language and Compiler for FPGAs," in Third IEEE Workshop
on FPGAs for Custom Computing Machines, 1995.

[21] J. B. Peterson, R. B. O'Connor, and P. M. Athanas, \Scheduling and Partitioning ANSI-C Programs onto Multi-FPGA
CCM Architectures," in Fourth IEEE Workshop on FPGAs for Custom Computing Machines, 1996.

[22] M. Figueiredo and C. Gloster, \Implementation of a probabilistic neural network for multi-spectral image classi�cation on an
fpga-based custom computing machine," Proceedings of the 5th Brazilian Symposium on Neural Networks, December 1998.

[23] D. L. Verbyl, Satellite remote sensing of natural resources, Lewis Publishers, Lewis Publishers, 1995.
[24] M. Birmingham S. R. Chettri, R. F. Cromp, \Design of neural networks for classi�cation of remotely sensed imagery,"

Telematics and Informatics, vol. 9, pp. 145{156, 1992.
[25] S. R. Chettri and R. F. Cromp, \Probabilistic neural network architecture for high-speed classi�cation of remotely sensed

imagery," Telematics and Informatics, vol. 10, pp. 187{198, 1993.
[26] Giga Operations, Giga Operations Spectrum Recon�gurable Computing Platform Documentation, Giga Operation Corpora-

tion, 1995.

13

Fig. 1. PNN Image Classi�er.

Fig. 2. FPGA board connected to a PCI bus slot.

14

Fig. 3. Multispectral image classi�cation using an FPGA coprocessor.

15

Fig. 4. PNN Classi�er Data Unit.

16

LOCAL CPU

local.ncsu.edu

Remote CPU

remote.nasa.gov

II nn tt ee rrnnee tt

cc ll ii eenn tt ssee rr vvee rr

North Carolina State University NASA Goddard Space Flight Center

Fig. 5. Algorithm Execution on a Remote Adaptive Computer.

17

Total Execution Time (in CPU seconds)

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

R
em

ot
e

P
ix

el
B

as
ed

R
em

ot
e

B
lo

ck

B
as

ed

Lo
ca

l
P

ix
el

B
as

ed

Lo
ca

l
B

lo
ck

B
as

ed

Image Classification Type

C
P

U
 T

im
e

Software (Java)

Software (C)

Hardware (Single)

Hardware (Multiple)

Fig. 6. Local and Remote Image Classi�cation Execution Time.

18

TABLE I

Remote Image Classification Timing Report (in CPU seconds).

Pixel Based Block Based
Description Avg Row Total Avg Row Total

Software (Java) 14.83 7597.79 2.65 1358.91

Software (C) 15.79 8087.24 3.61 1847.33
Hardware (Single) 4.16 2128.38 0.35 178.217
Hardware (Multiple) 4.25 2156.02 0.35 180.15

TABLE II

Local Image Classification Timing Report (in CPU seconds).

Pixel Based Block Based
Description Avg Row Total Avg Row Total

Software (Java) 2.57 1317.31 2.56 1309.65
Software (C) 3.57 1871.36 3.69 1889.63
Hardware (Single) 0.27 141.10 0.28 143.05
Hardware (Multiple) 0.14 77.45 0.28 142.57

19

Marco Figueiredo is an R&D Engineer working in the investigation and application of recon�gurable

computing at NASA Goddard Space Flight Center. He has a B.S. in Electrical Engineering from the

Universidade Federal de Minas Gerais - Brasil (1988), and a masters in Computer Engineering from

Loyola College in Maryland, USA (1991).

Clay Gloster, Jr. is currently an Associate Professor in the Department of Electrical & Computer

Engineering at North Carolina State University. He received the B.S. and M.S. degrees in Electrical

Engineering from North Carolina A&T State University and the Ph.D. degree in Computer Engineer-

ing from North Carolina State University. He also has been employed with IBM, the Department of

Defense, and the Microelectronics Center of North Carolina. Current research focuses on the identi�-

cation of potential applications and the development of automated tools that assist scientists/engineers

in mapping these applications onto recon�gurable computing resources. He is also actively conducting

research in the area of technology based curriculum development and distance education. Dr. Gloster

is a member of Eta Kappa Nu, Tau Beta Pi, ACM, an is a registered professional engineer.

Mark Stephens is a Computer Engineer working for the NASA Goddard Space Flight Center. He

has a B.S. in Applied Math, Theoretical Physics and Fluid Dynamics from Tulane University (1976).

He went on to get a Master of Science in Atmospheric Science at Colorado State University (1979).

Corey Graves received his B.S. degree in Electrical Engineering from North Carolina State University

in 1993 and his M.S. degree in Electrical Engineering from North Carolina State A&T State University

in 1994. He is currently completing his Ph.D. Work in Computer Engineering at North Carolina State

University. His current research interests include Run-time Recon�gurable Computing, Applications

of Wavelets, Adaptive DSP algorithms, and Architectures for DSP. During his years a student, Corey

has worked with many industrial and government entities including IBM, AT&T, Sandia National

Labs, and Oak Ridge National Labs. He is currently a member of the IEEE Signal Processing Society.

Mouna Nakkar received her Bachelor's degree in Electrical Engineering from the University of North

Carolina at Charlotte, NC in 1991, her Master's from the same university in 1993, and her Ph.D. de-

gree in 1999 from North Carolina State University in Raleigh, NC. She joined Motorola Inc. in July

of 1999 and is currently working on microprocessor research and development. Her research interests

include recon�gurable computing, embedded processors, FPGA architecture, low power FPGAs, high

speed CMOS design, Multi-Chip-Module Packaging, 3-Dimensional MCM packaging, and Optical In-

terconnects for high speed VLSI packaging. She worked on a microprocessor design during a co-op

in 1995 at Ross Technologies, Austin TX. She also served as a teaching assistant for several electrical

engineering courses.

20

